วันพุธที่ 17 สิงหาคม พ.ศ. 2554

ระบบเบรกป้องกันล้อล็อก ABS


     ระบบ ABS (Anti-Lock Brake System) คิดค้นขึ้นมาเพื่อแก้ปัญหาการลื่นไถลในขณะเบรก (เบรกลากล้อ) เนื่องจากความฝืดของระบบเบรกมีมากกว่าความฝืดของยางกับพื้นถนน ในขณะเบรก มีผลให้ล้อล็อกตาย ทำให้ควบคุมรถไม่ได้ และการที่ล้อล็อกตายก็เพราะมีแรงจากการเบรกกดอยู่ การทำให้ไม่ให้ล้อล็อก ต้องปลดแรงจากการเบรกออก แต่พอปลดแรงเบรกออก รถก็ไม่หยุด เป็นเงื่อนไขกลับไปกลับมาอยู่อย่างนั้น จึงแก้ปัญหานี้โดยการออกแบบให้ระบบเบรกทำงานแบบจับ-ปล่อยในจังหวะที่ เร็วประมาณ 50 ครั้ง/วินาที เพราะพบว่าถ้าทำได้เร็วมาก ๆ จะทำให้ได้ผลอย่างที่ต้องการทั้งสองทางคือ ที่ล้อไม่ล็อกทำให้ยังสามารถที่จะควบคุมทิศทางของรถได้ และในขณะเดียวกันก็สามารถทำให้รถหยุดได้ด้วย แต่การที่จะให้ระบบเบรกทำงานอย่างนั้นได้ต้องมีอุปกรณ์ที่ค่อนข้างซับซ้อน เข้ามาเกี่ยวข้อง.

 

น้ำมันเบรก
     น้ำมันไฮดรอลิกชนิดหนึ่ง ที่ทำหน้าที่ถ่ายทอดแรงกดเมื่อเราห้ามล้อโดยใช้เท้ากดแป้นเบรกเท่ากับเรา ส่งแรงกดนั้น ผ่านน้ำมันเบรกไปยังชิ้นส่วนที่ปลายท่ออีกด้วยหนึ่ง ยิ่งต้องกดแป้นเบรกต่ำกว่าเดิมมาก หมายถึงระดับน้ำมันเบรกต่ำลงกว่า ขีดต่ำสุดที่ยอมรับได้ ซึ่งอันตราย เป็นสัญญาณเตือนให้รู้ว่าอาจมีการรั่วซึมในระบบ สังเกตรอยหยดหรือคราบน้ำมันเบรกหลังจากจอดรถข้ามคืน ซึ่งจะบอกถึงบริเวณ ที่เกิดการรั่วซึมได้ หากพบรอยรั่วซึมใด ๆ ควรให้ช่างแก้ไขโดยเร็วที่สุด

ระบบและชิ้นส่วน
     พื้นฐานการทำงานหลักจากการทำงานของ 3 หน่วยหลัก (แต่มีเกิน 3 ชิ้นในรถยนต์ 1 คัน) คือ ใช้หน่วยควบคุมแรงดันน้ำมันเบรก (หน่วยควบคุมไฮดรอลิก HYDRAULIC CONTROL UNIT) เฉพาะเมื่อมีการเบรกในสถานการณ์ข้างต้น โดยติดตั้งแทรกอยู่ระหว่าง ท่อน้ำมันเบรกหลังออกจากแม่ปั๊มเบรกตัวบนก่อนส่งเข้าสู่กระบอกเบรกทั้ง 4 ล้อ แทนที่จะปล่อยให้น้ำมันเบรกส่งแรงดันไปเต็มที่เมื่อมีการเบรกอย่าง รุนแรง-กะทันหัน โดยจะสลับทั้งเพิ่มและลดแรงดันน้ำมันเบรกสลับกันถี่ ๆ ด้วยการควบคุมและสั่งงานจาก หน่วยควบคุมอิเล็กทรอนิกส์ (ELECTRONIC CONTROL UNIT) ซึ่งรับสัญญาณ มาประมวลผลจาก เซ็นเซอร์ (PULSE SENSOR) บริเวณแกนล้อ หรือเพลากลาง ซึ่งทำหน้าที่จับการหมุนของล้อ

     ระบบ ABS มีการทำงานบางส่วนตลอดการขับรถยนต์ แต่บางส่วนทำงานแค่บางครั้ง คือ มีการส่งสัญญาณเซ็นเซอร์ไปยังหน่วยควบคุมอิเล็กทรอนิกส์อยู่ตลอดเวลา เพื่อประมวลผลว่า ในตอนนั้นหน่วยควบคุมไฮดรอลิกควรจะมีการทำงานลด-เพิ่มแรงกันของน้ำมันเบรก สลับกันถี่ ๆ เพื่อคลายแรงกดของผ้าเบรกลง เพื่อป้องกันล้อล็อกหรือไม่ถ้าล้อใดๆ จะมีการล็อกหน่วยควบคุม
     ไฮดรอลิกที่รับคำสั่งจากหน่วยควบคุมอิเล็กทรอนิกส์ จึงจะทำงานลด-เพิ่มแรงดันน้ำมันเบรก โดยระบบควบคุมอิเล็กทรอนิกส์จะมีการตรวจสอบความผิดปกติของทั้งระบบอยู่ตลอด เวลา โดยมีการแสดงไฟสัญญาณบนแผงหน้าปัด ไฟจะสว่างขึ้นในช่วงหลังการบิดกุญแจก่อนสตารท์เครื่องยนต์ในช่วงแรก และดับลงหลังจากนั้นประมาณ 5 วินาที แล้วดับตลอดการขับ ถ้าในขณะขับรถยนต์แล้วมีไฟ ABS สว่างขึ้นมา แสดงว่าในตอนนั้นมีความบกพร่อง แต่ส่วนใหญ่มักยังมีระบบเบรกพื้นฐานใช้งานตามปกติ ให้ใช้งานรถยนต์ด้วยความระมัดระวังและควรนำรถยนต์เข้ารับการซ่อมแซม โดยที่การบกพร่องนั้นมีหลายระดับ มิใช่ต้องเสียหรือต้องเปลี่ยนทั้งระบบเสมอไป บางครั้งแค่เซ็นเซอร์บางตัวเสียหรือสกปรก ก็เกิดปัญหาขึ้นได้

การทำงานเสริมร่วมกับระบบ Traction Control
                นอกจากจะป้องกันการป้องกันการล็อกของล้อยังมีผู้ผลิตรถยนต์บางรายนำไป ประยุกต์ ใช้ร่วมกับระบบอื่น เช่น Traction Control เป็นระบบป้องกันการหมุนฟรีของล้อ ในการออกตัวในเส้นทางลื่นหรือในทางโค้ง โดยใช้ส่วนหนึ่งของ ABS ในการทำงาน คือ แทรคชันคอนโทรลบางระบบจะนำสัญญาณจากเซ็นเซอร์ ABS แต่ละตัว มาร่วมในการประมวลผลในหน่วยควบคุมอิเล็กทรอนิกส์ของระบบ Traction Control ว่า แม้ไม่มีการเบรก แต่ถ้ามีล้อใดหมุนเร็วกว่าล้ออีกข้างมากผิดปกติ ก็จะสั่งงานไปยัง หน่วยควบคุมไฮดรอลิกของ ABS ให้มีการจับตัวของผ้าเบรกลดความเร็วในการหมุนของล้อนั้นโดยเฉพาะอย่างเหมาะ สม เพื่อไม่ให้ล้อนั้นหมุนฟรีพร้อมตัดรอบการทำงาน ของเครื่องยนต์ แล้วค่อยคลายการจับเมื่อเข้าสู่สภาพปกติ เช่น เมื่อเข้าโค้งเลี้ยวซ้าย แล้วล้อด้านขวาหมุนเร็วกว่าปกติ เสี่ยงต่อการลื่นไถลหมุนคว้างท้ายปัด ระบบ Traction Control ก็จะสั่งงานผ่าน ABS เพื่อลดแรงดันน้ำมันเบรกในล้อนั้นลง พร้อมกับลดรอบของเครื่อง.

วันเสาร์ที่ 6 สิงหาคม พ.ศ. 2554

ระบบควบคุมการกระจายแรงเบรก EBD

 
         ระบบ EBD (Electronic Brake force Distribution) จะคอยปรับสมดุลของแรงเบรกที่ล้อหน้าและหลังให้เท่ากัน ตามสภาพการขับขี่ ในระบบเบรกของรถทั่วไป ที่ไม่มีระบบเบรก ABS และระบบ EBD นี้ ช่วยเสริมเมื่อเราเหยียบเบรก น้ำหนักของรถส่วนใหญ่จะถูกเทมาที่ล้อหน้า ส่งผลให้เกิดอาการหน้าทิ่ม-ท้ายยก ทำให้ควบคุมรถได้ลำบาก ยิ่งรถต้องมีการบรรทุกสัมภาระที่หนักมากๆ อาการดังกล่าวจะเกิดอย่างมาก แม้ว่ากระบะในปัจจุบันบางรุ่น จะมีระบบวาล์ว LSPV ที่จะคอยปรับแรงดันเบรกของล้อหลังให้สมดุลกับสภาพการบรรทุกที่กระบะหลังก็ตาม แต่วาล์วนี้ก็ยังไม่มีความอัจฉริยะเทียบเท่าระบบ EBD ที่ใช้กล่องคอมพิวเตอร์สมองกลควบคุมการทำงาน โดยมีเซนเซอร์ตามจุดต่างๆ ของตัวรถรับข้อมูลมาประมวลผลก่อน ที่จะสั่งให้ระบบทำงาน ถึงแม้ว่ารถจะมีระบบเบรก ABS ช่วยป้องกันล้อล็อคได้ แต่หากไม่มีระบบ EBD มาช่วย รถก็อาจจะสูญเสียการควบคุมในบางสถานการณ์ได้ และการทำงานของระบบ EBD สามารถช่วยทำให้ระยะเบรกเมื่อต้องเหยียบเบรกอย่างกะทันหัน สั้นลงและสามารถควบคุมทิศทางได้ แม้จะอยู่ในสภาวะฉุกเฉิน ด้วยระบบ EBD นี้จึงไม่ต้องกังวลใจใดๆ แม้ว่าภายในรถจะมีผู้โดยสารนั่งไปเต็มคัน หรือบรรทุกสัมภาระอย่างเต็มที่ แต่อย่างไรก่ตามระบบเบรกที่มีทั้ง ABS กับ EBD เข้าด้วยกันจะสามารถตอบสนองต่อการทำงานได้อย่างเต็มที่ตลอดเวลา.
การกระจายแรงเบรกที่ล้อหน้าและล้อหลัง
             การทำงานของระบบ EBD จะเป็นไปโดยอัตโนมัติทันทีที่ผู้ขับกดแป้นเบรก  โดยกล่องสมองกลจะนำค่าความ ต่างของความเร็วในการที่ล้อหน้าคู่หน้าและหลัง  ที่เกิดขึ้นในขณะที่ผู้ขับขี่กดแป้นเบรกใช้ในการคำนวณเพื่อหาปริมาณแรงกัน น้ำมันเบรกสูงสุดที่ระบบจะสามารถส่งให้เบรกทำงานได้  โดยไม่ก่อให้เกิดอาการ เบรกล็อกที่ล้อหลังจนเกิดอาการท้ายปัด  โดยเฉพาะในกรณีที่มีการบรรทุก สัมภาระหรือมีผู้โดยสารมาก  รถที่มีการบรรทุก น้ำหนักส่วนใหญ่จะกดลงที่ล้อหลัง  ทำให้เบรกหลังต้องรับภาระมากกว่าปกติ.
การกระจายแรงเบรกของล้อด้านซ้ายและขวา(ขณะเข้าโค้ง)     
              เมื่อขับขี่เข้าโค้ง  น้ำหนักของรถที่จ่ายไปยังด้านในจะลดลง  ถ้าผู้ขับขี่ต้องเหยียบเบรกเพื่อลดความเร็ว ระบบ EBD  จะเริ่มแปรผันแรงดันน้ำมันเบรกที่ถูกส่งไปยังล้อด้านในขณะนั้นได้อย่างเหมาะ สม  การที่มีระบบ  EBD เข้ามาเสริมการทำงานจะช่วยให้ผู้ขับขี่ควบคุมรถได้ดีแม้จะเบรกในขณะเข้าโค้ง.

ระบบถุงลมนิรภัย Airbag


  
ถุงลมนิรภัยคือถุงบรรจุแก๊สที่จะพองตัวอย่างรวดเร็วออกมาจากตรงกลางพวงมาลัยใน กรณีที่เกิดอุบัติเหตุพุ่งชนด้านหน้า เพื่อปกป้องผู้ขับจากแรงปะทะในกรณีชนประสานงา โดยมีการออกแบบถุงลมนิรภัยเพื่อลดอาการบาดเจ็บ ด้วยการป้องกันส่วนศีรษะและหน้าอกของผู้ขับไม่ให้ชนกับพวงมาลัย แดชบอร์ด หรือด้านบนของกระจกหน้ารถ ถุงลมจะพองตัวเฉพาะในกรณีที่ชนด้านหน้าอย่างแรง เมื่อคนขับที่คาดเข็มขัดนิรภัยต้องการการปกป้องร่างกายส่วนบนเป็นพิเศษ ซึ่งถุงลมนิรภัยทำงานโดยเซ็นเซอร์ที่ติดตั้งอยู่ในตัวถังของรถจะตอบสนองต่อ แรงปะทะที่แน่นอนบางชนิด และกระตุ้นการทำงานของถุงลมนิรภัย เครื่องอัดลมจะส่งแก๊สไนโตรเจนร้อนจำนวนมากมาที่ตัวถุงลมนิรภัย ทำให้ถุงลมนิรภัยพองตัวภายในเวลาแค่เสี้ยววินาที ม่านจากถุงลมนิรภัยจะทำให้ส่วนศีรษะและร่างกายส่วนบนของผู้ขับหยุดเคลื่อน ไหว และอีกไม่กี่วินาทีต่อมา แก๊สจะระเหยไปอย่างรวดเร็วผ่านรูขนาดเล็กมากในถุงลมนิรภัย เพื่อทำให้ถุงลมนิรภัยยุบตัวลง โดยหากต้องการให้ถุงลมนิรภัยทำงานได้อย่างมีประสิทธิภาพ ท่านต้องคาดเข็มขัดนิรภัยเสมอ ถุงลมนิรภัยถูกออกแบบขึ้นมาให้ทำงานร่วมกับเข็มขัดนิรภัย ไม่ใช่นำมาใช้แทนเข็มขัดนิรภัย
ตั้งแต่อดีตจนปัจจุบันนั้น Air Bag จะใช้สารสร้างก๊าซที่เป็นส่วนผสมของโซเดียมเอไซด์ (Sodium Azide) ซึ่ง เป็นสารเคมีที่เป็นพิษจึงได้มีการ วิจัยและพัฒนาเทคนิคทางด้านวัตถุระเบิด โดยมุ่งเน้น ไปยังสารสร้างก๊าซชนิดใหม่ที่มีอันตรายน้อยกว่า

เมื่อรถยนต์ได้รับแรงกระแทกจากภายนอกSensor(A) จะตรวจสอบแรงกระแทกนั้น แลั้วเครื่องตรวจวัดแรงกระแทกจทำการส่งสัญญาณไปยัง ตัวจุดฉนวนของเครื่องสร้างก๊าซInflator(B) สารสร้างก๊าซจะจุดระเบิด เกิดการเผาไหม้ โดยก๊าซที่เกิดขึ้นมาเป็นจำนวนมากจะเข้าไปพองตัวในถุงลมที่ติดไว้ที่พวงมาลัยหรือส่วนคอนโซหน้าของผู้นั่งข้างคนขับถุงลมที่ พองตัวนี้ จะป้องกันการกระแทกระหว่างตัวผู้โดยสารกับพวงมาลัยและกระจกหน้ารถ โดยขั้นตอนทั้งหมดตั้งแต่เกิดการชนจนถึงเวลาถุงลมพองตัวนี้ จะต้องคำนวณให้การทำงานเป็นไปอย่างแน่นอนและใช้เวลาที่ สั้นที่สุดโดยเวลาตั้งแต่สารสร้างก๊าซเผาไหม้จนกระทั่งถุงลมพองตัวได้อย่างสมบูรณ์จะใช้เวลาประมาณ 50ถึง 60msซึ่งนับเป็นเสี้ยวเวลาที่สามารถทำให้ถุงที่พองตัวรองรับกับการกระแทกที่รุนแรงได้ทันเวลาพอดี

เครื่องสร้างก๊าซมีโครงสร้างดังต่อไปนี้
 


Enlarged fragmentary view of Gas forming device (Inflator)

         คุณสมบัติของเครื่องมือนี้คือ ทำการเผาไหม้สร้าง ก๊าซได้ในระยะเวลาอันสั้น แล้วใช้ก๊าซที่เกิดขึ้นมานี้ ทำการ พองถุงลมนิรภัย

สารสร้างก๊าซ (Gas Generating Agents)
                สารสร้าง ก๊าซที่ใช้ในอดีตนั้นจะมีส่วนผสมของโซ เดียมเอไซด์ (NaN3)อยู่ เมื่อมีสถาวะการเผาไหม้ที่เหมาะ สมNaN3จะสลายตัวดังสมการต่อไปนี้

2NaN3(s)→2Na(s)+3N2(g)
                โซเดียม เอไซด์นั้นในสภาวะก๊าซ จะผลิตก๊าซ ไนโตรเจน(N2)ที่ไม่เป็นพิษ เมื่อผสมกับตัวออกซิไดซ์ แล้วจะมีอัตราเร็วในการเผาไหม้ที่เหมาะสม ทั้งยังมี สภาพการทนต่อความร้อนที่ดี จึงถูกนำมาใช้เป็นสาร สร้างก๊าซที่เหมาะสม แต่เนื่องจากตัวสารโซเดียม เอไซด์เองมีคุณสมบัติเป็นพิษจึงมีแนวโน้มที่จะเกิด อันตรายในขั้นตอนของ การผลิต การใช้งาน การขนส่ง การแปรรูป รวมทั้งการกำจัดของเสีย เมื่อตัวสาร โซเดียมเอไซด์นี้สัมผัสกับโลหะหนักจำพวก ทองแดง หรือตะกั่ว จะเกิดการทำปฏิกิริยาเป็นวัตถุที่ไวต่อการ ระเบิด หรือเมื่อเกิดการสลายตัวแล้ว ยังมีปัญหาสำคัญ ในเรื่องอันตรายของโซเดียมที่เกิดขึ้น ในการจัดหาสถานที่จัดเก็บหรือระบบ การจัดการที่มีความปลอดภัยเพื่อป้องกันอันตรายเหล่านี้นับว่าเป็น ปัญหาใหญ่ที่จำเป็นในการแก้ไข ดังนั้น องค์ประกอบ ของสารสร้างก๊าซที่จะนำมาใช้แทนโซเดียมเอไซด์ จึงจำเป็นที่จะต้องพิจารณาถึงสารที่ให้ปริมาณของก๊าซ ไนโตรเจนที่มากโดยไม่มีอันตราย 

เตตะซอลย์ (Tetrazole)
 
1H-Tetrazole

เตตะซอลย์เป็นสารที่ออกแบบโดย J.A.Bladin นักวิทยาศาสตร์ ชาวสวีเดนในปี 1885 ในปัจจุบันถูกนำ ไปผสมเป็นสารอื่นๆ(Derivative)ได้มากกว่า300ชนิด โดยโครงสร้างพื้นฐานของเตตะซอลย์นั้นเป็นวงกลม 5เหลี่ยมประกอบด้วยไนโตรเจน4ตัวและคาร์บอน1ตัว ซึ่งวงกลม5เหลี่ยมนี้จะมีพันธะคู่อยู่2พันธะเตตะซอลย์ ที่ใช้ในการทดลองครั้งนี้จะผสมกับอะมิโนกัวนิดินด้วยอัตราส่วน 1:2 ซึ่งมีสูตร โครงสร้างดังที่แสดงในรูป



5,5’-Azobis-Tetrazolel:Amino Guanidine (1:2)


สารเตตะซอลย์นี้จะนำมาผสมเข้ากับสารอ๊อกซิไดส์และทำการทดสอบหาคุณสมบัติการ เผาไหม้ต่อไป ในทดสอบความเหมาะสมกับการนำมาใช้เป็นสารสร้างก๊าซปัจจุบัน พบว่าสารเตตะซอลย์นี้จะให้ความร้อนที่เหมาะสม และอัตราเร็วในการเผาไหม้ที่รวดเร็วเมื่อผสมกับสารอ๊อกซิไดส์ KClO4 จึงมีความเป็นไปได้ที่จะนำมาใช้ทำเป็นสารสร้างก๊าซในอนาคต.

ข่าวขอนแก่น